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Abstract

Using molecular dynamics simulations of a planar graphene sheet, we investigate the
temperature dependence of its mechanical behavior under uniaxial tensile stress applied
either in the armchair or zigzag direction. Stress—strain curves are calculated for different
temperatures, and the corresponding dependence of various elastic parameters is discussed.
Fracture stress and strain, as well as the Young’s modulus, decrease almost linearly with
temperature, in accordance with previous investigations. An almost linear variation in the
third-order elastic modulus with temperature is demonstrated, revealing opposite trends
for uniaxial loadings in the armchair or zigzag direction. The detailed dependence of the
distributions of bond lengths and bond angles both on strain and temperature is presented
for the first time, along with approximate analytical expressions. The latter accurately
describe the numerically obtained distributions.

Keywords: graphene; molecular dynamics; stress-strain response; elastic properties; bond
length and angle distributions

1. Introduction

Since the discovery of graphene, there have been a number of investigations into its
mechanical behavior. Despite the difficulty of applying controlled mechanical loads at
the nanoscale, experimental studies have verified an exceptional value of stiffness and
extremely high tensile strength [1-3], in accordance with corresponding theoretical predic-
tions. For example, in Reference [1], the mechanical properties of graphene were deduced
from nanoindentation experiments conducted on circularly clamped samples, while in
References [2,3], push-to-pull testing was employed to directly apply uniaxial strain. There
exist a number of related numerical investigations using molecular dynamics (MD) sim-
ulations with a variety of potential functions [4-26], density functional theory [27-33], or
other theoretical approaches, including molecular mechanics [34-36] and combinations of
continuum elasticity theory with other methods [37-40].

The temperature dependence of the various elastic properties of graphene has been
examined using MD [7,9,20], Monte Carlo atomistic simulations [4], density functional
theory [33], and the asymptotic homogenization method [41]. Moreover, a few MD studies
have investigated the variation in bond lengths and bond angles with uniaxial tensile
loading [5,42]. The latter work showed results obtained using first-principles methods too
and presented analytical expressions for the dependence of these structural parameters on
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strain [42]. The variation in bond lengths and angles with biaxial strain has been discussed
in [43]. To our knowledge, the dependence of the distributions of bond lengths and bond
angles on both temperature and strain has not yet been examined.

In this work, we used MD simulations to study the behavior of planar graphene
under uniaxial tensile load, considering the influence of temperature. In particular, we
implemented symplectic integration methods for simulating the system’s time evolution,
allowing highly accurate computations for arbitrarily long times. We calculate stress—
strain curves at various temperatures, and from these results, we estimated the variation
in several elastic parameters with temperature. Our findings for the Young’s modulus,
fracture strength, and failure strain are in agreement with previous studies. The temperature
dependence of the the third-order elastic modulus has not been reported up to now.

Furthermore, we compute bond lengths and bond angles of bulk graphene over a
large time-window after thermal equilibrium has been reached and subsequently analyze
these results in order to determine the dependence of the corresponding distributions on
both stress and temperature. Finally, we present analytical expressions that closely match
the numerically obtained distributions of bond lengths and angles. Thus, we describe—for
the first time, to the best of our knowledge—the detailed dependence of these structural
properties of graphene on both the applied tensile stress and temperature.

This paper is organized as follows. In Section 2, we present the force field used,
along with the numerical methods we implemented. The results of our investigation are
discussed in Section 3. In particular, the implementation of finite temperatures in our MD
microcanonical simulations is discussed in Section 3.1, and thermal effects on graphene’s
mechanical response under uniaxial tension are studied in Section 3.2. Then, we present the
distribution of bond lengths and bond angles in the planar sheet of sp? carbon atoms under
various stresses and at various temperatures in Section 3.3, while analytical expressions
for said distributions are determined in Section 3.3.1. Finally, we conclude our findings in
Section 4.

2. Model and Numerical Methods

We consider a two-dimensional (2D) model of graphene as a hexagonal lattice of
carbon atoms within a plane. Figure 1 illustrates a part of this structure at equilibrium,
where the distance between any two neighboring atoms is ry = 1.42 A, and the angle
formed by three consecutive atoms is ¢9 = 27t/3 rad. Furthermore, all carbon atoms have
mass m = 12 amu. In the orientation depicted in Figure 1, the top and bottom edges
represent the “armchair edges”, while the left and right edges correspond to the “zigzag
edges”. Furthermore, it is common to call the “armchair direction” the horizontal direction
(as shown in Figure 1) and the “zigzag direction” the vertical one.

i i+l

Figure 1. A schematic of the hexagonal graphene lattice depicting N = 42 atoms, arranged in Ny = 6
columns and Nj = 7 rows. Atoms in column i and row j are indicated in blue and orange, respectively,
and the (7, j)th atom is in gray. The A- and Z-type bonds, and similarly the a- and {-type angles, are
indicated in red and green, respectively (see Section 3.3 for more details on these distinctions).
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We refer to columns and rows within the graphene sheet, as indicated by the blue
and orange atoms, respectively, in Figure 1. A lattice of size N = Nj x Nj consists of N;
columns, which are indexed by i, and Nj rows, which are indexed by j. The (i, j)th atom
is indicated in gray in Figure 1. Thus, the configuration shown in this figure corresponds
toa Ny x Nj = 6 x 7 lattice, totaling N = 42 atoms. In our simulations, we consider a
lattice of N; = 86 columns and N; = 87 rows of atoms, resulting in a N = 86 x 87 = 7482
total number of carbon atoms. This lattice size is sufficiently large to negate small-size
effects [12], allowing us to represent the behavior of bulk graphene while still permitting
extensive numerical simulations within reasonable CPU times. We have further confirmed
that indicative data for larger lattices are similar to the ones presented here.

A Hamiltonian formalism is used to investigate the in-plane dynamics of the lattice in
a similar fashion as in Reference [44]. The atomistic force field, describing bond-stretching
and angle-bending deformations, has been determined through fittings with relevant
density functional energy computations [12]. In particular, the potential energy of a covalent
bond between nearest neighboring carbon atoms at distance r is given by the Morse
expression,

Vm(r) = D(e_“(’_rﬁ) - 1)2, 1

where D = 5.7 eV is the depth of the potential well and 2 = 1.96 A~! is the inverse
characteristic length scale of the potential. The angle-bending energy term describing a
bond angle ¢ formed by three consecutive atoms is

VB(@) = = (9 — ¢0)* — = (¢ — ¢0)°, )

N R

d/
3

where d = 7.0 eV /rad? and d’ = 4 eV /rad? are the constants of the quadratic and nonlinear
term of the potential, respectively.

A limitation of the force field used, given by Equations (1) and (2), is the decoupling of
the bond-stretching and angle-bending variables. Though this is a standard approximation
in atomistic simulations, in real systems, these degrees of freedom are coupled. However,
the predictions of this model for the Young’s modulus and the intrinsic strength of graphene
are in good agreement with the experimental estimates of Reference [1], while the stress—
strain response is in accordance with corresponding calculations from first principles [12].
A more drastic approximation is that the out-of-plane atomic displacements are ignored.
At finite temperatures, ripples and other out-of-plane deformations spontaneously appear
in graphene due to thermal fluctuations [45,46]. However, we expect that at relatively
low temperatures, these non-planar deformations would be suppressed when graphene
is uniaxially stressed. Stretching has been experimentally used to flatten graphene [2],
and this has been further confirmed by MD simulations [47]. Thus, we have considered
here only temperatures up to 700 K and not higher ones, even though graphene exists at
much higher temperatures. As will be discussed later, the intrinsic strength and fracture
strain obtained via our model at room temperature are in good agreement with those
obtained from fully three-dimensional MD simulations employing different interatomic
potentials [3,5,47].

The total energy of the system (i.e., the values of the model’s Hamiltonian H) is the
sum of the above potential energy terms for all bond lengths between nearest neighboring
atoms and all bond angles between adjacent bonds and the kinetic energy of each atom.
Denoting the total potential energy at time t by Ey (t) and the total kinetic energy at t by
Ek(t), the Hamiltonian

H = Ex(t) + Ev(#), ©)
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is expressed through the positions (x(t),y(t)) and the corresponding conjugate momenta of
all carbon atoms within the considered graphene sheet. The time evolution of each atom’s
position and momentum is governed by the system’s Hamilton’s equations of motion,
which conserve the total energy, Equation (3).

To investigate the effects of uniaxial tensile load, a constant force f is applied to all
atoms on the appropriate edges of the sheet [12,42]: For stress/strain in the armchair
direction, the force f is applied on the atoms of the zigzag edges, where, on the opposite
edges, opposite forces, directed outwards, are applied. Similarly, for stress/strain in the
zigzag direction, the force f is applied to the armchair edges, again with opposite forces on
opposite edges. Tensile loading results in additional terms in the Hamiltonian, given by
appropriate products of the relevant edge atom displacements with the applied force f. For
constant forces, as in our case here, the conservation of the system’s total energy still holds.

We must emphasize that we perform stress-controlled simulations here, where we
fix the forces (stress) and directly compute the resulting strain. This is a natural choice in
MD, in contrast to imposing fixed displacements (strain-controlled simulations), which are
preferred in first-principles studies. In principle, these two methods of strain- or stress-
controlled simulations are equivalent for estimating the stress—strain mechanical response
of the system. For example, one can see in Figures 4 and 5 of Reference [12] a direct
comparison of stress-controlled MD data and strain-controlled density functional theory
data, which produce identical results, at least in the linear response regime.

In two-dimensional materials like graphene, the stress is expressed as force per unit
length. Taking into account the distance between successive atoms at the relevant edges
where the force is applied, i.e., the nearest neighboring atoms along an edge column, or
row, in Figure 1, concerning stress in the armchair or zigzag direction, respectively, the
following relations connect nominal stresses and forces

0 = _f and o, = f 4)

rosin(¢o/2) 0.570[1 + cos(¢o/2)]”

where the indices @ and z denote stress in the armchair and zigzag direction, respectively,
while rg and ¢y are the equilibrium values mentioned above.

To determine, at a temperature of zero, the relaxed state of the strained graphene
for various applied stresses in any direction, a friction term proportional to the velocity
of each atom is incorporated in the MD simulations, with the friction coefficient set to
¥ =0.1 ps’1 ; see Reference [12] and the discussion therein. Then, the fourth order Runge-
Kutta numerical integration technique is used with an integration time step of dt = 0.005 t,,,
where t, = 0.0102 ps represents the time unit in our model. This time step ensures that
the relative energy error Err(t) = |H(t) — H(0)|/|H(0)| is below 10~7 in corresponding
energy-conserving simulations where the friction term is absent. However, we now simu-
late the dynamics of the dissipative version of the system until times fy = 3 X 103 t,, when
the total kinetic energy is practically zero (Ek(tf) < 10716 eV). In this way, we determine
the relaxed equilibrium positions of the atoms within the lattice for each considered value
of stress 0.

Based on this equilibrium configuration of graphene subjected to tensile loads, we
embark on the main phase of the numerical investigation: following the dynamics of
the lattice for a fixed value of stress ¢ at various temperatures T for a long enough time
to allow the formulation of deductions about the thermal-equilibrium properties of the
stressed material. For these numerical simulations, we implement the symplectic integrator
ABABS864 [48], with an integration time step dt = 0.06 t,,, which results in relative errors of
the total energy Err(t) < 10~7 for all times. This particular integration scheme has been
shown to perform very well in balancing computational speed and numerical accuracy for



Materials 2025, 18, 5179

50f22

multidimensional Hamiltonian lattices [49] and was successfully used for examining chaos
in graphene [44].

The relaxed equilibrium positions that have previously been determined for the
given value of stress o correspond to a graphene sheet being at zero temperature, without
thermal fluctuations. In order to simulate the system at finite temperatures, following
a suitable energy—temperature calibration (see Section 3.1 below), we randomly insert
an additional energy density (average energy per site) ey on the relaxed T = 0 K state.
This additional energy is initially provided as solely potential energy, in the form of
small random displacements of each atom from the relaxed zero-temperature positions.
Then, these displacements are properly scaled in order to adjust the added energy density
en to the desired value corresponding to the simulated temperature. During evolution,
the initial potential energy is shared as kinetic and potential energy, and eventually the
system equilibrates.

In general, for the numerical results presented in the next section, we consider
10-20 different individual realizations of the randomly added initial energy, but we have
selectively checked the robustness of the data when more realizations are used. For each
realization, we calculate the temporal evolution of the various quantities of interest and
then compute the average of these time series over the different realizations in order to
determine the time dependence of the considered quantities for the ensemble. We denote
such an averaged quantity over the different realizations with angled brackets, e.g., (M(t))
for the measurement of the quantity M(t). We may further determine the average of a
thermally equilibrated quantity over time. In such a case, we average both over initial
realizations and over time intervals, and we denote the computed average by using both
an overline and angled brackets, e.g., (M) for a variable M at thermal equilibrium.

At finite temperatures, the size of graphene sheets exhibits oscillations around their
T = 0 K relaxed configurations due to the thermal energy of the system (discussed further
in Section 3.2 below). In order to collect data over enough of such sheet oscillations,
we follow the system’s time evolution up to 4 x 103 t,. The recording window for all
subsequent measurements is from 1 x 103 to 4 x 103 t,, totaling 3000 t,,. We checked the
insensitivity of the obtained results to the length of the recording window by testing longer
time windows.

3. Results and Discussion
3.1. Temperature Calibration

When an energy density ey is inserted into the strained graphene lattice, we observe
that, initially, the total kinetic energy increases with time from its starting value of zero; then,
following some relatively large fluctuations, the system settles at thermal equilibrium after
at most 10° t,,. The time evolution of the system’s temperature T (t) towards equilibrium is
computed in our microcanonical MD simulations through the energy equipartition relation

_ Ek(t)
Nkp

T(t) ()
where kg is the Boltzmann constant.

In order to test whether thermal equilibrium has been reached, we compare the
mean value and the standard deviation of the fluctuating temperature over various time
windows. Before thermal equilibrium is achieved, the standard deviation of the time-
averaged T is relatively large, and it also changes depending on the time window. When
thermal equilibrium is reached, the temperature fluctuations and the standard deviation
are consistently small. The mean temperature at thermal equilibrium is calculated by
averaging over both the individual realizations and the recording time-window. We denote
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this average value (T) as Ty In this case, the standard deviation of the measured values
is computed using all data points over realizations and time.

The relationship between the additional energy density ex on top of the relaxed
equilibrium loaded structures and the averaged temperature Ty, is linear in all cases of
different stresses examined here, at least for temperatures up to 700 K, as considered in this
work. One representative case is shown in Figure 2. The resulting slopes from the linear
fittings of the data are very close for all values of stress ¢ (a difference in the computed
values is observed only in the fourth significant digit), and they are slightly above 2kp due
to the nonlinearities of the potential energy. For finite loads, the slope slightly increases
with the amount of stress. Thus, for a given value of stress o, we use the obtained slope
of the ey versus Ty, linear fitting in order to control temperature (within a 1% accuracy)
in our investigation. In particular, we set the amount of the added energy density ey
according to the desired temperature value.
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Figure 2. Red dots represent the relation between the additional energy density ey above the relaxed
T = 0 K graphene structure subjected to uniaxial tensile stress o = 2.16 eV /A? in the zigzag direction
and the average temperature Ty, at thermal equilibrium, evaluated through the MD simulations
by averaging over both time and the different realizations. One standard deviation of the Ty,
measurements is indicated by blue horizontal error bars. The linear fitting of the presented data
points is indicated by the gray solid line, providing a slope equal to 1.74 x 1074 eV /K.

In order to investigate the system’s elastic and structural properties, as discussed in the
following sections, we collected data from the central region of the lattice to avoid potential
edge effects and thus represent the behavior of bulk graphene. In particular, this central
region sub-lattice has a geometry analogous to the larger structure, with n; = 44 columns
and n; = 45 rows.

3.2. Mechanical Response

In the stress-controlled numerical implementation used here to examine the mechani-
cal response of graphene, we compute the resulting strain due to the fixed force applied
at the appropriate edge atoms. The uniaxial strain € is obtained through the strain of the
central row of the graphene sheet when the stress is applied in the armchair direction,
while it is calculated by the average strain on the two central columns of the sheet in
case of stress in the zigzag direction (see Figure 1). et indicates the strain corresponding
to temperature T.

In the zero-temperature case, i.e., where T = 0 K, the uniaxial strain €j is determined
through the relative change in the length of the central row (two central columns) of
graphene subjected to a given applied stress in the armchair (zigzag) direction with respect
to the length of the central row (columns) in the unstrained equilibrium configuration
shown in Figure 1. These measurements are taken in the central region of the lattice, as
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mentioned at the end of the previous subsection. For any length computations discussed
here, a horizontal (vertical) length is measured as the difference of the x (y) coordinates of
the edge atoms considered. The stress—strain response is obtained in this way at 0 K.

When the temperature of the system is raised at finite values, by adding energy to
the equilibrated graphene, the lattice stretches and compresses in an oscillatory manner.
The details of these oscillations depend on the temperature and the applied stress and
will be investigated in the future. In this case, one has to take into account that the
strain measurement e () is now exhibiting temporal oscillations. Since we consider 10-20
different realizations of the randomly inserted initial energy distribution, we register the
average, over these realizations, strain in time (er(t)), noting that the aforementioned
oscillations are in-phase in the different realizations.

For evaluating the strain €7 of a uniaxially loaded graphene sheet at finite tempera-

ef

is needed. This reference length accounts for thermal effects on the initial configuration,

tures, a reference length /- 7~ corresponding to zero stress ¢ = 0 at the particular value of T
and it is obtained by calculating the average, over realizations and time, of the length of
the central row, or columns, of the sheet in the absence of a load. Then, when a stress is
applied, the time evolution of strain in a particular realization is determined as the relative

change in the length with respect to the reference length ¢ ref
o) — 0!
er(t) = ()FTT/ (6)
b

where /(1) is the length at time ¢ of the central row or the average length of the two central
columns depending on the direction of the applied uniaxial load.

In Figure 3, we highlight the behavior of (er(t)) for various values of stress ¢ in the
zigzag direction at three distinct temperatures T, which are indicated by different colors.
An increase in temperature leads to an increase in the amplitude of strain oscillations as
well as in the average strain. The latter is obtained as the average over both realizations and
time, (er), and it is indicated by the dashed horizontal lines of different colors depending
on the temperature in Figure 3. The average strains (e7go) (red horizontal dashed lines)

about which the T = 700 K curves oscillate are higher than the (e199) (blue horizontal
dashed lines) of the T = 100 K curves in all cases of different stress. However, these
differences are larger for absolute values for larger stresses.

Lo v | I

2.04(a) l - 6 r)—_(b - 1407 -
1.8 - ] L ] i
= 164 - 601 E 135 ‘ ‘ ‘ -
= o £ 3 1 i -
S - - (n i
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Figure 3. Time evolution of the average (over individual realizations) strain (e (t)), Equation (6),
when stress—(a) o = 0.188 eV/A2, (b) ¢ = 1.03 eV/A?, and (c) ¢ = 1.97 eV/A2—in the zigzag
direction is applied for different temperatures: T = 100 K (blue curves), T = 400 K (green curves), and
T =700 K (red curves). The average (over realizations and time) strains @, for each temperature,
are indicated by the horizontal dashed lines of the same color in each panel.
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We have validated that if one follows an alternative path on the (o, T) plane by
first giving initial energy to the system and then applying forces at the edges, practically
identical average strains are obtained. However, our approach is much more efficient
because the temperature is accurately controlled and, more importantly, the system reaches
thermal equilibrium significantly faster; in the alternative method, the equilibration takes
orders of magnitude longer.

Calculating the average strain (?ﬂ, as mentioned above, allows one to obtain the
mechanical response of planar graphene at different temperatures. Stress—strain curves
for uniaxial tensile loads in the armchair and zigzag directions are presented for various
temperatures in Figure 4. Despite the small differences, one can see for larger stresses
that the average strain is a bit further to the right for the higher-temperature cases. The
error bars indicate the standard deviation of the average strain measurement. As one
can also deduce from Figure 3, the standard deviation is higher for higher temperatures.
This is highlighted via the insets in each panel, where a close-up of the data points and
error bars is presented for the region, which is indicated by the gray rectangle in each
panel. When examined close-up, it is easier to see that the lengths of the error bars increase
with temperature.

We have checked the accuracy of the presented strain measurements when more
realizations or longer time windows are considered. In particular, the obtained strain values
differ in the 3rd significant digit at most when the number of realizations is increased or
the length of the time window is doubled.
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] L 0.54 e
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Figure 4. Stress—strain response of planar graphene for uniaxial loads in the (a) armchair and
(b) zigzag directions for different temperatures as indicated in the legend. Filled circles indicate
the obtained average strain for each given stress. Solid curves represent fittings of these data with
Equation (7) (see text). For T # 0K, the strain is given as the average over time and realizations, (er),
and the error bars correspond to one standard deviation. The insets in each panel depict a close-up

view of the region indicated by the gray rectangle in each panel.

Since, at finite temperatures, strain is measured with respect to the averaged oscillating
length ngef due to thermally induced vibrations of the unstrained sheet, the stress—strain
curves pass through the origin of Figure 4, as expected. From Figure 4, we can see that the
temperature has a relatively small effect on the stress—strain response, at least for the values
of T considered here, apart from the significant reduction in the fracture point. For small
stresses, the achieved strain is practically the same for the two directions of applied stress,
while the strong directional dependence at large stresses has already been well established
in previous investigations [5,12,20,28].

The stress—strain response can be described by the nonlinear relation [12]

o =Ep-€+Dyp- €, ()
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where ¢ is the applied uniaxial stress, € is the corresponding strain, Ep is the 2D Young's
modulus, and D;p is the 2D third-order elastic modulus. For each temperature examined
and both directions of applied stress, we first obtained the value of Young’s modulus using
the linear response at small stress/strain, and then we fit the data presented in Figure 4
with Equation (7) to determine the third-order elastic modulus. The computed values
of Eyp and D,p are plotted in Figure 5 as a function of temperature for applied stress in
either the armchair (red points) or the zigzag (blue points) direction. The error bars on
these points indicate one standard deviation of the fitted parameters under the observed
covariance of the fit. A linear variation can roughly approximate the obtained temperature
dependence of these elastic moduli. Linear fittings of the corresponding data are indicated
by the dashed red (dotted blue) line for stress in the armchair (zigzag) direction.

18 . @ | [ — (b):
1 .3 i g R E T T 230
Bld o = 3 - ] s I
= | w0 T L = ] r
E . 3. e RS I [
Z 312 ~3 [ 25807 { N
s ] 3 [ 9 ] ,{ i
310 i B —600 i}% =
: 9 Stress in zigzag direction \I\\ : b ‘,,fE’// r
308; Ii S‘rr(‘s‘s inlzu’nll(-lm‘ir rlu‘(‘("r‘irm‘ R \]‘: B 7620—7 i‘ R . N ;

0 200 400 600 0 200 400 600

T (K) T (K)

Figure 5. Temperature dependence of (a) the Young’s modulus E;p and (b) the third-order elastic
modulus D;p for applied stress in the armchair (red points) or zigzag (blue points) direction, evalu-
ated through fittings of the data in Figure 4 with Equation (7) (see text).

The Young’s modulus E;p (Figure 5a) appears to decrease almost linearly with
an increasing temperature, albeit only by a relatively small amount, which is consis-
tent with other results in the literature [7,33,41]. In particular, the linear fitting of
these data for stress in the armchair direction leads to a variation in E;p(T) with a
slope of —8.1 x 1073 (N/m)/K, while for stress in the zigzag direction, the slope is
—4.4 x 1073 (N/m)/K.

The decrease in the Young’s modulus with temperature is often given in the literature
as a percentage change over the investigated range of temperatures. To ensure we make a
superior direct quantitative comparison, we present our results along with existing ones in
the literature as percentage change per 100 K. In our case, the Young’s modulus decreases by
0.25%/100 K and 0.13% /100 K for stress in the armchair or the zigzag direction, respectively.
Combined density functional theory and quasi-harmonic approximation calculations in
Reference [33] yielded a E;p decrease by 0.22% /100 K over the range from 0 K to 1000 K.
Molecular dynamics was used in Reference [7] for investigations, at 300 K, 500 K, and 700 K,
of graphene lattices of different aspect ratios consisting of 1886 atoms. E;p was found to
decrease by 1.3% /100 K, 0.48% /100 K, and 0.33% /100 K (0.88%/100 K, 0.65% /100 K, and
0.33% /100 K) for strain in the armchair (zigzag) direction, where the three different values
correspond to graphene aspect ratios of 1.97, 1.44, and 1.01 (1.95, 1.45, and 0.99). We note
that our lattice has an aspect ratio of 1.72. Molecular dynamics simulations in Reference [14]
resulted in a Epp decrease by 1.4%/100 K over a temperature range of 300 K to 2000 K
for strain applied in the armchair direction. Finally, in Reference [41], a reduction in E;p
between 0.19% /100 K and 0.25% /100 K was obtained for temperatures ranging from 0 K
to 1600 K, where the varying reduction depends on the different parameterizations of the
model used, thus affecting the Young’s modulus value at T = 0 K.
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The calculated Young’s modulus E;p at 300 K is in good agreement with values
reported in experimental studies conducted at room temperature [1-3]. In particular,
our findings, namely, 315 N/m and 312 N/m for loading in the zigzag and armchair
directions, respectively, are consistent with the Young’s modulus reported in References [1]
(340 = 50 N/m), [2] (300 to 340 N/m), and [3] (350 &= 100 N/m).

We can observe from Figure 5b that the D,p values are consistently higher for strain
in the zigzag direction than for the other direction. This is congruent with the fact that the
graphene sheet is more resistant to stress in the zigzag direction. When stress is exerted
in the armchair direction, one third of all the bonds are parallel to the direction of strain,
and hence these bonds exhibit maximal stretching in the sheet. Taking into account the
respective angle deformations, there is generally higher strain for the same stress in this
case as compared to loads in the zigzag direction. As the Young’s modulus is almost
the same in these two cases, there is a lower D;p modulus (i.e., higher absolute values)
for stresses in the armchair direction. The different strains for a given stress in the two
perpendicular loading directions discussed here can be seen when comparing the panels
of Figure 4, where the curves for stress in the armchair direction lie further to the right
than when the stress is applied in the zigzag direction, indicating higher strains for the
same stress. Regarding the temperature variation of D,p, different trends are exhibited
when the stress is in the zigzag or armchair direction. A linear fitting of the D,p(T) data
points results in a slope +5.0 X 10~2 (N/m)/K for strain in the armchair direction and
—1.0 x 1072 (N/m)/K for strain in the zigzag direction. The value of D,p increases by
0.91%/100 K (decreases by 0.19% /100 K) for strain in the armchair (zigzag) direction over
the temperature range from 0 K to 700 K.

Finally, we estimate the graphene’s fracture strength oy and failure strain € for
different temperatures T. The former is obtained by using the highest tested value of stress
o that does not lead to failure of the graphene sheet. Its error bar is provided by the step
we used when increasing the tested ¢ values, which are evenly spaced. These results are
presented in Figure 6a, where an almost linear decrease in fracture stress with temperature
is shown. A linear fitting of these data points is indicated with a dashed red (dotted blue)
line for stress in the armchair (zigzag) direction. The slope of the linear fitting of the o¢(T)
datais —8.4 x 1073 (N/m)/K for stress in the armchair direction and —1.5 x 102 (N/m)/K
for stress in the zigzag direction.

L L L L L Lo T L

o1t g R vl
A40§ E ..... o * 25— - —
£ 4 t Fd g : 2] { I
%357_ ......... E - \::2(); { { C

b C w’ ] C
b\305 E““f“‘“}“---i a 15 t IEI :
. e L
L T L T T T T T ] L [T L L R L R R :
0 200 400 600 0 200 400 600
T (K) T (K)

Figure 6. Temperature dependence of (a) the fracture strength o and (b) associated failure strain e
of graphene. Straight lines represent linear fittings.

Such a linear dependence of the fracture strength on temperature is in accordance
with existing results. In particular, we estimate that, based on the MD study on graphene
loaded in the armchair direction reported in Reference [9], fracture strength decreases with
temperature at a rate of —8.6 x 10~ (N/m)/K, which is in very good agreement with the
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slope obtained in our work for the same direction. Molecular dynamics simulations were
also used in Reference [40], and the presented temperature dependence of the fracture
stress decreased linearly with a slope of —1.4 x 1072 (N/m)/K. However, the loading
direction was unclear in the cited case. In another MD investigation, where the stated
loading direction was the armchair direction, the corresponding slope was found to be
—1.6 x 1072 (N/m)/K [14]. Lastly, Reference [24] employed a combination of machine
learning and MD simulations with the Tersoff potential. In that study, the fracture strength
decreased linearly with temperature, exhibiting a slope of —3.8 x 10~2 (N/m)/K for loading
in the zigzag direction, whereas for loading in the armchair direction, a bilinear behavior
is observed: the slope is initially —6.7 x 1072 (N//m)/K but becomes steeper above 500 K,
thus representing the only non-linear trend reported in the literature.

The failure strain, €y, at different temperatures has been estimated through the value of
fracture stress by solving for € in Equation (7). To this end, the known value of 0y, as well as
the fitted values of E;p and D;p describing the stress—strain curve at the given temperature,
has been used. In this case, the error bars were determined by converting the corresponding
extreme values of stress, 0y + Acy, to strain (via Equation (7)), and then choosing the
maximum absolute difference from €. These results are shown in Figure 6b, where again
a linear fitting of the data is indicated with a dashed red (dotted blue) line for stress in
the armchair (zigzag) direction. The linear fitting of the €¢(T) data points leads to a slope
—4.7 x 1073 % strain/K for stress in the armchair direction and —1.6 x 10~2 % strain/K
for stress in the zigzag direction. We can further compare these slopes to existing results
by estimating the slopes of the failure strain versus temperature data reported in the
literature. For uniaxial loading in the armchair direction, in Reference [9], a slope of
—4.8 x 1073 % strain/K was estimated, which is in very good agreement with our result. A
slope of —5.4 x 1073 % strain/K was estimated for the results presented in Reference [40],
where, as noted above, the loading direction was unclear. Finally, the corresponding slope
for strain applied in the armchair direction was —5.9 x 1072 % strain/K in Reference [14].

The fracture stress reported in the experimental study conducted in Reference [1] is
42 + 4 N/m. We obtained an intrinsic strength of 39.1 £1.5 N/m (28.7 = 1.3 N/m) and a
fracture strain of 18.5 & 1.5% (12.0 & 0.8%) for loading in the zigzag (armchair) direction at
300 K. We note that our results are in good agreement with the intrinsic strength and fracture
strain values reported elsewhere, which additionally allow out-of-plane deformations of the
material. Specifically, MD simulations carried out at 300 K using the AIREBO potential yield,
for loading in the zigzag direction, intrinsic strengths of around 36 — 37 N/m and fracture
strains between 17% and 20% [3,5]. For loading in the armchair direction, Reference [47]
conducted MD simulations using the REBO force field at 300 K, obtaining a fracture strain
of 12.5% at a stress of 29.1 N/m, while Reference [5], who used AIREBO, reported an
intrinsic strength of 30 N/m and a fracture strain of 13%.

The results shown in Figure 6 indicate that graphene fails at lower applied stress/strain
as temperature increases. This is reasonable since, as can be clearly seen from Figure 3, for
the stress-controlled simulations considered here, the sheet achieves higher strains over
the course of its oscillations by increasing temperature. As a result, for fixed stress, the
bonds between neighboring atoms experience greater stretching at higher temperatures and
therefore are more likely to break, causing failure of the material due to the increase in the
maximum deformation of the lattice. Moreover, graphene can tolerate greater loads in the
zigzag direction in the whole temperature range investigated here, as implied by the results
in Figure 6, where the values of fracture strength and failure strain are consistently lower for
stress in the armchair direction (red data points) as compared to stress applied in the zigzag
direction (blue data points). In contrast to the relatively stronger temperature dependence
of the fracture strength and failure strain, the Young’s modulus variation shown in Figure 5a
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exhibits a much smaller relative change, implying that the influence of thermal effects on
the stiffness of graphene is less significant, at least within this temperature regime.

3.3. Bond Length and Bond Angle Distributions

In order to analyze the effects of temperature and stress on the distributions of the
lengths and angles of the bonds, we first distinguish the two types of bond lengths, denoted
by A and Z, and the two types of angles, indicated by « and (, as illustrated in Figure 1.
The A bonds are in the armchair direction. The Z bonds alternate symmetrically in the
zigzag direction and both exhibit identical deformations at 0 K when a uniaxial stress is
applied in the high-symmetry zigzag or armchair directions. The angles « and { represent
the bond angles formed between two consecutive Z bonds and between an A and a Z bond,
respectively. They always respond oppositely under an applied stress due to the geometry
of the system and the constraint « + 2¢ = 271.

When a load is applied at zero temperature, due to the absence of fluctuations and the
static nature of the strained sheet, there is no variability in the two types of bond lengths
and angles, and their distribution is delta-peaked. Approximate expressions for the strain
dependence of bond lengths A and Z and angles « and { were provided in Reference [42].
With the indices a or z used to indicate a load applied in the armchair or zigzag direction,
respectively, these expressions read as follows:

Ag = 1.42 +0.011 g + 0.00024 €3, 8)
Z, = 1.42 +0.0031 ¢y — 0.000046 €3, 9)
and
g = 120° — 0.83 9 + 0.020 €3, (10)
Ta = 120° 4 0.41 ¢y — 0.010 €3, (11)

while for stress in the zigzag direction,

A, =142, (12)
Z, = 1.42 + 0.0088 €y 4 0.000080 €3, (13)
and
&, = 120° + 0.80 €y — 0.013 €3 (14)
2 = 120° — 0.40 €g + 0.0064 €3. (15)

In Equations (8), (9), (12), and (13), the bond lengths A or Z are given in A, and the
zero-temperature strain € is expressed as % strain. Similarly, in Equations (10), (11), (14),
and (15), the bond angles « and ( are provided in degrees, and € should be given again as
a percentage strain. The distributions of bond lengths (angles) in bulk graphene at T = 0 K
are given by double singular peaks at the locations provided by the above pairs of relations
for the bond lengths (angles), depending on the direction of the loading for different values
of the applied uniaxial strain.

In order to reveal the influence of temperature on the bond length and angle distribu-
tions, we registered all the fluctuating bond length and angle values during the system’s
evolution in our measurement window and obtained normalized distributions for different
amounts of stress/stain at various temperatures. In particular, we created a distribution
for each realization by allocating all the measured bond lengths (angles) to fine-grained
bins with a width of 3.5 x 10~3 A (0.004 %). The resulting distributions were normalized
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and then averaged over the different realizations in order to obtain the final distribution
for each case. It is worth noting that the size of the error bars, indicating one standard
deviation of this averaging computation over the different realizations, is negligible and
hence not included in the plots of the distributions presented below. We emphasize again
that we consider the central region of the sheet for collecting our data, as mentioned at the
end of Section 3.1.

In Figures 7a—d, we show the normalized bond length distributions for increasing
values of stress applied in the armchair direction. In Figures 7e-h, the applied load is in the
zigzag direction, and the stress increases from (e) to (h) too. When there is no loading, i.e.,
o = 0, at finite temperatures, the distributions are simply normal distributions with the
variance linearly increasing with temperature (see Section 3.3.1). Increased temperature
leads to larger fluctuations in the lattice, resulting in a wider spread of the observed bond
lengths. In the presence of uniaxial loading, for the smaller values of stress presented in
Figure 7a,e, there is a slight skewing of the distributions. As the stress is increased, the
single peak splits into two peaks that are gradually separated more and more, as can be
clearly seen from the plots corresponding to lower temperatures, due to the increased
separation of the A and Z bond length values (see Figures 2 and 3 in Reference [42]).
However, the increase in temperature leads to the merging of these two peaks due to their
broadening. The centers of the peaks correspond to the zero-temperature values of the
two types of bond lengths for each different direction of the applied stress, as given in
Equations (8), (9), (12), and (13).
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Figure 7. Normalized bond length distributions in graphene under increasing applied stress (left
to right) in the armchair (top row) and zigzag (bottom row) directions at different temperatures
T, as indicated in the legend. The curves are a guide for the eyes. The vertical lines indicate the
values of the A and Z bond lengths at zero temperature based on Equations (8), (9), (12), and (13).
The stresses ¢ in the armchair direction are (a) 0.569 eV/AZ, (b) 0.895 eV /A2, (c) 1.22 eV/AZ2, and
(d) 1.55 eV/A?, while those in the zigzag direction are (e) 0.563 eV/A2, (f)1.13eV/A2, (g) 1.69 eV/A2?,
and (h) 2.16 eV /A2,

Since there are twice as many Z-type bond lengths as A-types, the highest peak in
each distribution in Figure 7 mostly encompasses the lengths of the Z-type bonds. Thus,
we can see that for stress applied in the armchair direction (Figure 7a-d), it is the A bonds
that achieve greater lengths (the lower peak, further to the right), while the Z bonds exhibit
smaller extension. In contrast, for stress applied in the zigzag direction (Figure 7e-h), the
Z bonds achieve greater lengths (the taller peak is to the right in the distributions), while
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probability distribution

probability distribution

the centers of the smaller peaks remain near rg = 1.42 A, in accordance with Equation (12)
and the corresponding broadening due to thermal effects. The fact that all bonds stretch for
stress applied in the armchair direction, but only the Z type bonds (two-thirds of all the
considered bonds) are extended for a load in the other direction [42], proves that the gap
between the two peaks is more pronounced for stress applied in the zigzag direction.

In Figure 8, results similar to those given in Figure 7 are presented, but for the distri-
bution of bond angles. At zero strain, normal distributions centered about the equilibrium
angle of ¢9 = 120° were obtained for finite temperatures, with a variance increasing with
temperature (see Figure 9b below). Again, we see the gradual peak splitting due to in-
creased stress, while increasing the temperature leads to the broadening and merging of
these peaks. The highest peak in the bond angle distributions corresponds to the {-type
angles, since there are twice as many { angles as « angles. For stress in the armchair
direction (Figure 8a—d), the « angles decrease, while the { angles increase. The reverse is
true when the stress is applied in the zigzag direction (Figure 8e-h). Also, in this case, the
peaks of the distributions are centered about the zero-temperature « and { values, as given
in Equations (10) and (11) or (14) and (15), depending on the direction of the applied stress.
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Figure 8. Normalized bond angle distributions in planar graphene under increasing stress (left
to right) applied in the armchair (top row) and zigzag (bottom row) directions at various tem-
peratures T, as indicated in the legend. The curves serve as a guide for the eyes. The vertical
lines indicate the values of the & and { bond angles at zero temperature based on Equations
(10), (11), (14), and (15). The values of stress ¢ in the armchair direction are (a) 0.244 eV/ A2,
(b) 0.651 eV/A2, (c) 1.06 eV/A?, and (d) 1.55eV/A2, while those in the zigzag direction are
() 0.282 eV /A2, (£) 0.939 eV /A2, (g) 1.60 eV/AZ, and (h) 2.16 eV /A2,

3.3.1. Analytical Expressions for the Bond Length and Bond Angle Distributions

We now present approximate analytical expressions for the bond length and angle
distributions, as shown in Figures 7 and 8, in order to describe the dependence of graphene’s
structural properties on stress and temperature. Based on the results discussed in the
previous subsection, we note that the obtained distributions appear to approximately be
given through the combination of two normal distributions, where the means of these
normal distributions correspond to the values of the two types of bond lengths, or angles,
found for each stress at zero temperature. The variance of these normal distributions is
induced by thermal fluctuations, while the difference in peak heights is related to the fact
that there exist twice as many of one type of bond length (or angle) as the other.
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As there exist approximate expressions for the equilibrium bond lengths and bond
angles as a function of the applied strain at T = 0 K (see Equations (8)—(15)), the explicit
dependence of variance on temperature remains to be determined. This will be achieved by
numerically evaluating the effects of temperature on the normal distributions of the bond
lengths and bond angles for the unstrained graphene sheet. The results of these calcula-
tions will be compared with analytical estimates of the variance through the Boltzmann
distribution, using a second-order approximation on the relevant potential energy terms
describing bond stretching and angle bending.

Performing a Gaussian-curve-fitting procedure for the numerically obtained distribu-
tions of the bond lengths and bond angles at zero applied stress for various temperatures
(as shown in Figure 9a,b, respectively), we computed the corresponding variances and
mean values. The dependence of these variances on temperature is indicated by filled
circles in Figure 9¢,d for the bond length and angle distributions, respectively. Solid lines in
the remaining plots denote a linear fitting of the data. It is worth noting that the mean of
the bond length distribution slightly increases with temperature too due to the soft Morse
potential describing bond stretching. However, incorporating this small variation in the
mean value with temperature does not practically affect the results discussed below. The
mean of the bond angle distribution does not change with temperature, as expected due to
the equality of the & and { angles in the unstrained graphene and their constrained sum.
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Figure 9. Normalized distributions of (a) bond lengths and (b) bond angles in bulk unstrained
graphene (0 = 0) at different temperatures T, as indicated in the legend, are indicated by circles.
Solid lines in (a,b) represent Gaussian fittings of the numerical data. Circles represent temperature
dependence in (c,d): the variance ):%/1 of the Gaussian fitting of the bond length distributions is
presented in (c); the variance Z% of the Gaussian fitting of the bond angle distributions is shown
in (d). Solid lines in (c,d) indicate linear fittings of the corresponding data (see Equations (16) and
(17)), while dotted lines denote the analytical approximate expressions of Equations (19) and (20),
respectively.
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A linear fitting describes the dependence of the variance ¥2, of bond length distribu-
tions on temperature T
ZU(T) = Cu T, (16)

with Cy; = 1.66 x 107¢ A2/K (solid line in Figure 9c¢). Similarly, the numerically found
variances X2 for the bond angle distributions are well described by

¥2(T) =CpT, (17)

with Cg = 1.02 x 102 degz/K (solid line in Figure 9d).

The proportionality of these variances with temperature can be derived through the
Boltzmann distribution when a quadratic approximation of the corresponding potential
energy is considered. In particular, according to the second derivative of the Morse potential
of Equation (1),

Vii(r) =:-—21>aze*2ﬂﬁ‘*0>(54’*’® —-2), (18)

the second order approximation of the bond-stretching energy term about the equilibrium

r = ro reads V}i" = a?D(r — r)?. Using this approximation, the corresponding Boltzmann

42 )2
distribution exp (%) results in a normal bond length distribution of the form

(r—r)? . .
exp ( (272;0) ) centered about the mean ry with a variance
M

YW (T)= ——T 19
M() ZQZD 7 ( )

which gives 3, (T) = 1.97 x 107° (A2/K) - T when the parameters of the Morse potential
are substituted.

Following a similar approach to estimate the variance of the bond angle distributions
for different temperatures, we consider the second-order approximation of the potential
Vi, Equation (2), about ¢ = ¢y = 120°, given by V" = %17;% (¢ — ¢0)? (when angles are
measured in degrees). Note that due to the constraints on the sums of the bond angles
around a particular atom and on the sums within hexagonal rings, just one angle can not
be varied alone. When an angle slightly varies from the equilibrium value, at least three
other angles should also change. Thus, multiplying the linearized angle-bending energy
in the Boltzmann distribution by a factor 4, we eventually find the variance (in squared
degrees), about the mean ¢y, of the bond angle distribution

k51802
Y2(T) =
5(T) 4m2d 7

(20)

which results in ¥2(T) = 1.01 x 102 (deg?/K) - T, using the value of d.

The dotted lines in Figure 9c,d correspond to the analytical expressions of
Equations (19) and (20), respectively. We can see from Figure 9c that the analytically
obtained slope of Equation (19) is somehow larger than the corresponding numerical value
of Equation (16) (the relative difference is less than 20%). Concerning the variance of the
bond angle distributions, Figure 9d shows an excellent agreement between the analyt-
ically and numerically obtained slopes, exhibiting a relative difference of less than 1%.
One reason for the quantitative disparity between the analytical prediction and numerical
determination of the slope of the linear temperature dependence of the variance of the
bond length distributions, but not for the angle distributions, may be the fact that the
second-order approximation of the angle-bending potential V(¢) of Equation (2) is valid
for a wide range of angles (see Figure 2 in Reference [12]). However, due to the highly
anharmonic nature of the Morse potential Vj;(r), Equation (1), at the same energy scales
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(see Figure 1 in Reference [12]), the second-order approximation about ry is only valid
when very close to rg.

By combining the numerically determined variances for different temperatures and
the known bond length and angle mean values as a function of the applied stress/strain,
analytical approximate expressions for the bond length and angle distributions can be
derived. Regarding the bond length distributions, an additional issue should be taken into
account when the numerically determined variances from Equation (16) will be used. In
particular, the relation between variance and temperature should be scaled according to the
behavior of V}; (Equation (18)) at the mean of the corresponding peak of the distribution
since bond lengths even further away from r are encountered once stress is applied to the
system and the second derivative of the Morse potential varies significantly with r. Given
that, analytically, the variance equates to kgT/ V&(ro), when close to ¥ = 1y, we multiply
the numerically determined variance from Equation (16) by the scaling function

_ Vi(ro)
where 7 is the known mean of the peak of interest in the distribution, provided by either
Equations (8) and (9) or Equations (12) and (13) depending on the loading direction.

As a result, the bond length distribution for a given applied stress/strain and temper-

ature T can be approximated by the relation

Py = ! ex (— (r—A) )+ 2 ex (- (r—2zp ) (22)
M= g AT P\ 2CuF(A)T) " 3y /2nCmE(Z) T P\ 2CuE(Z)T)’

where A and Z are functions of the applied stress/strain, determined in Equations (8) and

(9) or Equations (12) and (13), for stress in the armchair or zigzag direction, respectively,
Cp is given in Equation (16), and F(r) is yielded by Equation (21). The factor of 2 in the
second term is present because there are twice as many Z bonds as A bonds. Division
by 3 is employed for normalizing the distribution. Note that the quantities A and Z are
provided by the corresponding zero-temperature relations in Equations (8), (9), (12), and
(13) as a function of strain e. If they are needed as a function of stress o, the stress—strain
relation of Equation (7) should be used to change the variable of the applied load.

For the bond angle distributions, the subtlety mentioned above concerning the scal-
ing function is not needed since the second derivative of the angle-bending potential,
Equation (2), is the same everywhere regardless of the angle value at the peak of the distri-
bution. Therefore, the angle-bending distributions can be approximated by the expression

1 (9—a) (9—20)?
wosmarlr(ar) ee(iar) @

where « and ( are determined by the applied stress/strain from Equations (10) and (11)
or (14) and (15), depending on the loading direction, and Cp is provided by Equation (17).
The factor 2 in the second term is present because there are twice as many ¢ angles as «
angles, and division by 3 normalizes the distribution. If the loading is given through the
value of stress, Equation (7) can be also used.

The circles in Figure 10 present the numerically computed bond length distributions at
various applied stresses and temperatures, while the solid lines correspond to the curve Py,
from Equation (22). Figure 11 contains similar results, but for the bond angle distributions.
These plots show that the analytical expressions presented above provide a reasonable
description of the bond length and angle distributions in strained graphene at various
temperatures, at least up to the values considered here. In Figure 10, at the larger values
of applied stress and lower temperatures, the analytical distribution Py; of Equation (22)
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underestimates the longer-bond (second) peak of the numerically obtained distributions
(Figure 10d,g,h). Figure 10h shows the greatest deviation of the analytical expression from
the numerical data at the right-hand peak of the lowest temperature at T = 100 K; in this
case, the difference is 8.7%. From the plots of Figure 11, we can see that the analytical
expression Pp (Equation (23)) describes the data quite well, apart from small discrepancies
at the heights of the taller peak at the lower temperatures depicted and for the smaller
values of stress. Figure 11a shows the biggest deviation for the T = 100 K case, where the
value of the analytical expression is 4.1% below that of the numerical data. In any case,
both expressions of Equations (22) and (23) provide a useful analytical description of the
underlying structural properties of the strained graphene at finite temperatures.
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Figure 10. Bond length distributions at various temperatures T (as shown in the legend) and under
various applied stresses in the armchair direction (left column) or the zigzag direction (right column)
under increasing loads from top to bottom. In particular, the stresses o in the armchair direction are
(a) 0.0813 eV/A?, (b) 0.569 eV/A?, (c) 1.06 eV/A2, and (d) 1.55 eV /A2, The stresses in the zigzag
direction are (e) 0.0939 eV /A2, (f) 0.751 eV /A?, (g) 1.41 eV/A2, and (h) 2.16 eV/A2. The analytical
expressions of Equation (22) are indicated by solid curves, and the corresponding numerical data are
indicated by circles.
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Figure 11. Bond angle distributions for different temperatures T (as shown in the legend) and stresses
in the armchair direction (left column) or the zigzag direction (right column) under increasing values
of stress from top to bottom. The stress in the armchair direction is (a) 0.0813 eV / A2, (b) 0.569 eV /A2,
(c) 1.06 eV/A2, and (d) 1.55 eV/A2, while that in the zigzag direction is (e) 0.0939 eV/ A2
() 0.751 eV /A2, (g)141eV/ A2, and (h) 2.16 eV /A2, The analytical expressions given by Equation (23)
are indicated by the solid curves, and the corresponding numerical data are indicated by circles.

4. Conclusions

We investigated the planar dynamics of a uniaxially loaded graphene sheet using
Hamiltonian formalism and an efficient symplectic integration technique allowing the
collection of accurate numerical data for very long simulation times. Our MD simulations
examined the effects of thermal fluctuations in the mechanical response of graphene. In
particular, we derived stress—strain responses for two different directions of applied stress,
namely, along either the armchair or the zigzag direction, at various temperatures.

A small, almost linear decrease in the Young’s modulus of graphene was obtained
as the temperature of the sheet increased. Such a variation in the Young’s modulus with
temperature is in line with previous investigations. Furthermore, an intriguing temperature
dependence of the third-order elastic modulus has been presented for the first time; this
dependence was found to decrease (slightly increase) its absolute value with an increasing
temperature for stresses in the armchair (zigzag) direction. Finally, we found that tensile
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strength and failure strain decrease approximately linearly with temperature and computed
the slope of this variation. A quantitative comparison with existing results regarding these
variations was presented.

It is worth mentioning that even though our model is restricted to planar deformations,
the results obtained for the intrinsic strength and fracture strain at room temperature
are in agreement with MD simulations [3,5,47], allowing out-of-plane displacements of
carbon atoms. Moreover, the values of Young’s modulus and fracture strength at 300 K
are in accordance with the experimental estimates presented in References [1-3] and
Reference [1], respectively.

The dependence of the distributions of bond lengths and bond angles within the
graphene sheet on both the applied stress and temperature has also been discussed. Ap-
proximate analytical expressions for these distributions were provided. In particular, we
found that the distributions can be described by the sum of two Gaussian peaks, where the
center of each peak is obtained from the values of bond lengths or bond angles, respectively,
in the strained graphene subjected to a particular amount of stress at zero temperature.
The variance of each peak as a function of temperature was derived by employing the
corresponding data at zero applied stress, while for the bond length distributions, a scal-
ing factor was additionally incorporated to account for the anharmonicity of the Morse
potential. Thus, for the first time, a detailed description of the effects of both stress and
temperature on the structural properties of graphene is reported.
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